

1. Multiply:

 $\frac{1}{4} \cdot \frac{2}{4}$

Give your answer as a fraction, reduced to lowest terms

3. Divide. Write your answer in lowest terms.

 $\frac{12}{5} \div \frac{3}{10}$

5. Add $\frac{1}{8} + \frac{3}{10}$

Give your answer as a fraction, reduced to lowest terms.

7. Add $\frac{1}{3} + \frac{1}{21} + \frac{4}{7}$ and write the result in simplified form.

9. Scott bought a large bag of cookies at the bakery. He ate $\frac{1}{6}$ of a bag and his sister ate $\frac{1}{4}$ of a bag.

What fraction of the bag did they eat?

What fraction of the bag remains?

11. Simplify:

 $(9-4)^3 \cdot [9^2 \div (2+7)]$

2.Multiply. Write your answer in lowest terms.

 $\frac{7}{20} \cdot \frac{1}{4} \cdot \frac{8}{7}$

4. Divide. Write your answer in lowest terms.

$$\frac{7}{20} \div \left(-\frac{21}{10}\right)$$
6. Add: $\frac{1}{6} + \left(-\frac{3}{4}\right)$

Give your answer as a reduced fraction.

8. Subtract: $\frac{7}{10} - \frac{4}{15}$

Give your answer in reduced terms.

10. Use the rule for order of operations to simplify the expression as much as possible:

$$67 - 3(5 \cdot 8 - 19) =$$

12. You read online that a 15 ft by 20 ft brick patio would cost about \$2,275 to have professionally installed. Estimate the cost of having a 24 by 29 ft brick patio installed.

\$_____

Round your answer to the nearest dollar.

13. When Ibuprofen is given for fever to children 6 months of age up to 2 years, the usual dose is 5 milligrams (mg) per kilogram (kg) of body weight when the fever is under 102.5 degrees Fahrenheit. How much medicine would be usual dose for a 18 month old weighing 22 pounds?

_____milligrams

Round your answer to the nearest milligram.

- **15.** Solve for x: $\frac{1}{3}x + \frac{1}{5} = -5\left(\frac{3}{4}x + 3\right)$
- **17.** Solve the equation 9x + 5 = 3x + 6.

19. Solve the equation, 19x + 9 - 18x = 20, for the given variable.

21. Simplify -4 + 4(6 - 2x)

23. Simplify $\frac{2}{7}x + \frac{4}{7} - 2x + \frac{16}{7} + \frac{11}{7}x - 4$, leaving all values as fractions or integers (no decimals)

25. Solve the inequality. Graph the solution on the number line. $-9x - 9 \ge 18$

4										
-	<u>'</u> .									-
.5	-4	-3	-2	-	0	1	2	- 3	4	- 5

14. Solve -7(x + 2) + 8 = -4(x - 2) for x

16. Solve the equation 6x + 1 = 2x + 9 algebraically.

18. Solve the equation. Give your answer as an integer or a reduced fraction.

$$7 - 6(-9c + 7) = -2c - 5$$

20. Simplify:
$$2(x+3) - \frac{1}{3}(-12x - 12)$$

22. Perform the indicated operations and simplify: $\frac{1}{11}x + \frac{1}{7}(x + 2)$

24. Ariana walks 4.3 miles in 40 minutes. If she walks at the same speed the whole time, how far will she walk in 110 minutes? *Round your answer to 2 decimal places as needed*

Ariana will walk ______miles in 110 minutes.

26. Solve the inequality. Graph the solution on the number line. $-\frac{7}{4}x \le -\frac{7}{4}$

27. Find the coordinates of the point plotted below

28. Find the coordinates of the point plotted below

29. (1 pts)

Graphing Linear Functions

Identify the Slope and Intercepts of the function $f(x) = -\frac{1}{2}x - 3$. Then draw an accurate graph of the function.

$$f(x) = -\frac{1}{2}x - 3$$

Slope

Vertical Intercept

Horizontal Intercept

		5					
		5					
-5					5	5	
		-					
		-5-					

30. Graphing Linear Equations

Determine the vertical and horizontal intercept of the linear equation 18x + 3y = -36. Then draw an accurate graph of the linear equation.

Vertical Intercept

Horizontal Intercept

18x + 3y = -36

31. Linear Equations in General Form

Consider the following equation: 6x - y = 5Enter your answers as integers or reduced fractions.

Vertical Intercept: (,)

Horizontal Intercept: (,)

Slope =

Write the equation 6x - y = 5 in slopeintercept the form: y = mx + b.

32. Use the intercepts to draw the graph of the function 12x + 3y = 24.

33. Find the slope of the line shown below

34. Find the slope of each line in the 5 graphs below. Make sure to scroll down to see all the graphs. Give your answers as integers or reduced fractions. If a line does not have a slope, enter DNE.

slope =

slope =

35. Given the points (7, -1) and (9, 3) find the slope.

37. Find the slope between the points (10,2) and (11,2). Enter DNE if the slope between the points is undefined.

Slope:

36. Find the slope of the line that goes through the points (-3,9) and (1,-11).

38. Find the equation of the line with slope = -6 and passing through (9,-6). Write your equation in point-slope AND slope-intercept forms.

point-slope form:

slope-intercept form:

40. Give the equation of the line with a slope of $\frac{1}{6}$ and a y-intercept of (0,7).

41. Find the equation (in terms of *x*) of the

line through the points (-5,4) and (2,-5)

43. Add the polynomials:

 $(4x^4 + 9x^3 - 2) + (-12x^3 + 2x^2 + 8x)$

45. Expand out: $(4x + 2)^2$

46. Factor the GCF out of the polynomial below:

 $6x^6 + 10x^4 + 14x^3$

39. Write an equation for the graph below in terms of *x*

y =

42. Given the function $f(x) = 4x^2 - 4x + 2$. Calculate the following values: f(-2) =f(-1) =f(0) =f(1) =f(2) =

44. Subtract the polynomials and simplify the result completely:

 $(7x^5 - 2x^3 - 11x^2 + 11)$ $-(4x^5-5x^4+7x^2+2)$

47. Factor $4z^6 + 20z^4$

48. Factor completely. If not factorable, write Prime.

 $8x^2 + 22xy + 5y^2$

49. Factor completely. If not factorable, write Prime.

 $15x^2 - 51x + 18$

50. Factor $x^2 - 4x - 12$.

51. Factor the trinomial $x^2 - 7x + 10$

52. Solve $x^2 + 10x + 21 = 0$

53. Solve the equation $-5r^2 + 6 = -7r$

55. Solve the equation $-10t^3 = -6t^2 - 4t$:

54. Solve the given equation.

$$15 = (r - 7)(r - 5)$$

56. Solve the equation $p^2 - 2p - 48 = 0$ by factoring. **57.** Solve the equation $m^2 - 49 = 0$ by factoring

40.
$$y = \frac{1}{6}x + 7$$

41. $-\frac{9}{7}x - \frac{17}{7}$
42. $26 \sim 10 \sim 2 \sim 2 \sim 10$
43. $4x^4 - 3x^3 + 2x^2 + 8x - 2$
44. $3x^5 + 5x^4 - 2x^3 - 18x^2 + 9$
45. $16x^2 + 16 \cdot x + 4$
46. $2x^3(3x^3 + 5x + 7)$
47. $4z^4(1z^2 + 5)$
48. $(4x + y)(2x + 5y)$
49. $3(5x - 2)(x - 3)$
50. $(x + 2)(x - 6)$
51. $(x - 2)(x - 5)$
52. $-3 \sim -7$
53. $2, -\frac{3}{5}$
54. $10,2$
55. $1, -\frac{2}{5}, 0$
56. $8, -6$
57. $-7, 7$